SubSet
Given a set of distinct integers, S, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not contain duplicate subsets.
For example,
If S =[1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| public List<List<Integer>> subsets(int[] nums) { List<List<Integer>> list = new ArrayList<>(); Arrays.sort(nums); backtrack(list, new ArrayList<>(), nums, 0); return list; }
private void backtrack(List<List<Integer>> list , List<Integer> tempList, int [] nums, int start){ list.add(new ArrayList<>(tempList)); for(int i = start; i < nums.length; i++){ tempList.add(nums[i]); backtrack(list, tempList, nums, i + 1); tempList.remove(tempList.size() - 1); } }
|
SubSet-ii
Given a collection of integers that might contain duplicates, S, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not contain duplicate subsets.
For example,
If S =[1,2,2], a solution is:
[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| public List<List<Integer>> subsetsWithDup(int[] nums) { List<List<Integer>> list = new ArrayList<>(); Arrays.sort(nums); backtrack(list, new ArrayList<>(), nums, 0); return list; }
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int start){ list.add(new ArrayList<>(tempList)); for(int i = start; i < nums.length; i++){ if(i > start && nums[i] == nums[i-1]) continue; tempList.add(nums[i]); backtrack(list, tempList, nums, i + 1); tempList.remove(tempList.size() - 1); } }
|
Permutations
Given a collection of numbers, return all possible permutations.
For example,
[1,2,3]have the following permutations:
[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2], and[3,2,1].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| public List<List<Integer>> permute(int[] nums) { List<List<Integer>> list = new ArrayList<>(); backtrack(list, new ArrayList<>(), nums); return list; }
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){ if(tempList.size() == nums.length){ list.add(new ArrayList<>(tempList)); } else{ for(int i = 0; i < nums.length; i++){ if(tempList.contains(nums[i])) continue; tempList.add(nums[i]); backtrack(list, tempList, nums); tempList.remove(tempList.size() - 1); } } }
|
Permutations-ii
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,
[1,1,2]have the following unique permutations:
[1,1,2],[1,2,1], and[2,1,1].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| public List<List<Integer>> permuteUnique(int[] nums) { List<List<Integer>> list = new ArrayList<>(); Arrays.sort(nums); backtrack(list, new ArrayList<>(), nums, new boolean[nums.length]); return list; }
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, boolean [] used){ if(tempList.size() == nums.length){ list.add(new ArrayList<>(tempList)); } else{ for(int i = 0; i < nums.length; i++){ if(used[i] || i > 0 && nums[i] == nums[i-1] && !used[i - 1]) continue; used[i] = true; tempList.add(nums[i]); backtrack(list, tempList, nums, used); used[i] = false; tempList.remove(tempList.size() - 1); } } }
|
对于排列的问题,我们每次都要遍历整个 num,如果他有重复的字母,正因为需要遍历所有的 num,因此我们需要记录每一个字母的状态,保证在一个 epoch 里面,这一个和上一个字母一样的情况下,我们只使用一次当前的字母。
而其他的情况,不规定每一次要用所有的字母,从们按照顺序执行,已经在顺序中去除了重新遍历可能会得到之前用过的字母的情况,因此只需要 skip 掉重复的字母即可。
树的遍历
path-sum-li
Given a binary tree and a sum, find all root-to-leaf paths where each path’s sum equals the given sum.
For example:
Given the below binary tree andsum = 22,
1 2 3 4 5 6 7
| 5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 2 5 1
|
return
1 2 3 4
| [ [5,4,11,2], [5,8,4,5] ]
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| import java.util.*; public class Solution { ArrayList<ArrayList<Integer>> result=new ArrayList<ArrayList<Integer>>(); public ArrayList<ArrayList<Integer>> pathSum(TreeNode root, int sum) { if(root==null) return result;
dfs(root,sum,new ArrayList<>()); return result; } public void dfs(TreeNode node,int target,ArrayList<Integer> list){ if(node==null) return; list.add(node.val); if(node.left==null&&node.right==null&&target==node.val){ result.add(new ArrayList<>(list)); list.remove(list.size()-1); return; } dfs(node.left,target-node.val,list); dfs(node.right,target-node.val,list); list.remove(list.size()-1); } }
|
对于树的回溯与遍历,从根节点到叶子节点,我们必须注意 path 中,在最后的叶子节点,对于新加入的点的回溯,因为 left 和 right 共同指向了 list,当左节点符合时,有可能右节点也符合,因此必须撤销这一点。
binary-tree-maximum-path-sum
任意 node 到任意 node
Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
For example:
Given the below binary tree,
Return 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| public class Solution { int max=0; public int maxPathSum(TreeNode root) { if(root==null) return 0; if(root.left==null&&root.right==null) return root.val;
max=Integer.MIN_VALUE; getMax(root); return max; } public int getMax(TreeNode node){ if(node==null) return 0; int left=Math.max(0,getMax(node.left)); int right=Math.max(0,getMax(node.right)); max=Math.max(max,node.val+left+right); return Math.max(left,right)+node.val; } }
|